If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-56x+49=0
a = 7; b = -56; c = +49;
Δ = b2-4ac
Δ = -562-4·7·49
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-42}{2*7}=\frac{14}{14} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+42}{2*7}=\frac{98}{14} =7 $
| x(-15)=(-14) | | x*(-15)=(-14) | | 10-7x=8-9x | | 5(5t-2)=-35+10t | | U3(x-3)+65=-4x | | -62=10x-10-12-10x | | 37=3v | | 4n-6-4n=-6 | | 9/x=7.5 | | (8^9)^p=8^18 | | -24t=16 | | 2z=z.z | | 12–a=5 | | (9x-3)/(5x+3)=5 | | x/9=7.5 | | 3w-w.3=0 | | 3(a-4)=-2(a-9) | | 7f=15+6f | | 13t-3t-4t-4=16 | | 3w=w.3 | | 2+4x=2(2x+) | | 2(1-2j)=3(3j+1 | | -2x+7=-6x+1 | | 7x-(3x+1)=4(3+1) | | 2n/3n=150 | | 10(x+4)=5x | | z/8+3=19 | | 100=-16t^2+400t+100 | | -15=2(w-5)-7w | | .20x+.35(30)=24.5 | | 5m-6=5+7-m | | 24x-(46x-12=0 |